Эволюции звезд. Эволюция звёзд разной массы

Занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие . Поэтому звезда достаточно быстро перемещается параллельно оси ординат.

Температура поверхности не меняется, а радиус и свети-мость уменьшаются. Температура в центре звезды повышает-ся, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек пово-рачивается параллельно оси ординат, температура на поверх-ности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.

Продолжительность начальной стадии определяется массой звезды. Для звёзд ти-па Солнца она около 1 млн лет, для звезды массой 10 M ☉ примерно в 1000 раз меньше, а для звезды массой 0,1 M ☉ в тысячи раз больше.

Молодые звёзды малой массы

В начале эволюции звезда малой массы имеет лучистое яд-ро и конвективную оболочку (рис. 82, I).

На стадии главной по-следовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас во-дорода обеспечивает светимость звезды массой 1 M ☉ пример-но в течение 10 10 лет. Звезды большей массы расходуют водо-род быстрее: так, звезда массой в 10 M ☉ израсходует водород менее чем за 10 7 лет (светимость пропорциональна четвертой степени массы).

Звёзды малой массы

По мере выгорания водорода центральные области звезды сильно сжимаются.

Звёзды большой массы

После выхода на глав-ную последовательность эволюция звезды большой массы (>1,5 M ☉) определяется условиями горения ядерного горюче-го в недрах звезды. На стадии главной последовательности это — горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость вы-деления энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружён-ное зоной, в которой перенос энергии осуществляется излуче-нием.

Светимость звёзд большой массы намного превышает све-тимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд то-же намного выше.

По мере уменьшения доли водорода в веществе конвектив-ного ядра темп выделения энергии уменьшается. Но посколь-ку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область крас-ных гигантов.

Звёзды малой массы

К моменту полного выгорания водорода в центре звезды малой масс обра-зуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости кон-вективных потоков внешние слои звезды раздуваются. Разме-ры и светимость её возрастают — звезда превращается в крас-ный гигант (рис. 82, II).

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре на-чинает идти тройная гелиевая реакция и одновременно реак-ция образования кислорода (3He=>C и C+He=>0). В то же время на поверхности гелие-вого ядра начинает гореть во-дород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в опи-санных реакциях в каждом элементарном акте выделяет-ся сравнительно немного энер-гии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень слож-ным (рис. 84). На диаграмме Герцшпрунга—Ресселла звезда перемещается вдоль после-довательности гигантов или (при очень большой массе в области сверхгигантов) пери-одически становится цефеи-дой .

Старые звёзды малой массы

У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью .

Эволюционный трек звезды малой массы на диаграмме Герцшпрунга — Рассела показан на рисунке 83.

Гибель звёзд большой массы

В конце эволюции звезда боль-шой массы имеет очень слож-ное строение. В каждом слое свой химический состав, в не-скольких слоевых источниках протекают ядерные реакции, а в центре образуется желез-ное ядро (рис. 85).

Ядерные реакции с желе-зом не протекают, так как они требуют затраты (а не выде-ления) энергии. Поэтому же-лезное ядро быстро сжимает-ся, температура и плотность в нем увеличиваются, достигая фантастических величин — температуры 10 9 K и давления 10 9 кг/м 3 . Материал с сайта

В этот момент начинаются два важнейших процес-са, идущие в ядре одновременно и очень быстро (по-видимому, за минуты). Первый заключается в том, что при столкно-вениях ядер атомы железа распадаются на 14 атомов гелия, второй — в том, что электроны «вдавливаются» в протоны, образуя нейтроны. Оба процесса связаны с поглощением энер-гии, и температура в ядре (также и давление) мгновенно па-дает. Внешние слои звезды начинают падение к центру.

Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже со-держащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических эле-ментов (т. е. более тяжёлых, чем гелий) образовались во Все-ленной именно во вспышках

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности . Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра , если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

Рассмотрим кратко основные этапы эволюции звезд.

Изменение физических характеристик, внутреннего строения и химического состава звезды со временем.

Фрагментация вещества. .

Предполагается, что звезды образуются при гравитационном сжатии фрагментов газопылевого облака. Так, местами звездообразования могут являться так называемые глобулы.

Глобула - плотное непрозрачное молекулярно-пылевое (газопылевое) межзвездное облако, которое наблюдается на фоне светящихся облаков газа и пыли в виде темного круглого образования. Состоит преимущественно из молекулярного водорода (H 2) и гелия (He ) с примесью молекул других газов и твердых межзвездных пылинок. Температура газа в глобуле (в основном, температура молекулярного водорода) T ≈ 10 ÷ 50К, средняя плотность n ~ 10 5 частиц/см 3 , что на несколько порядков больше, нежели в самых плотных обычных газопылевых облаках, диаметр D ~ 0,1 ÷ 1 . Масса глобул М ≤ 10 2 × M ⊙ . В некоторых глобулах наблюдаются молодые типа T Тельца.

Облако сжимается под действием собственной гравитации из-за гравитационной неустойчивости, которая может возникнуть либо самопроизвольно, либо как результат взаимодействия облака с ударной волной от сверхзвукового потока звездного ветра от находящегося неподалеку другого источника звездообразования. Возможны и другие причины возникновения гравитационной неустойчивости.

Теоретические исследования показывают, что в условиях, которые существуют в обычных молекулярных облаках (T ≈ 10 ÷ 30К и n ~ 10 2 частиц/см 3), первоначальное может происходить в объемах облака с массой М ≥ 10 3 × M ⊙ . В таком сжимающемся облаке возможен дальнейший распад на менее массивные фрагменты, каждый из которых будет также сжиматься под действием собственной гравитации. Наблюдения показывают, что в Галактике в процессе звездообразования рождается не одна , а группа звезд с разными массами, например, рассеянное звездное скопление.

При сжатии в центральных районах облака плотность возрастает, в результате чего наступает момент, когда вещество этой части облака становится непрозрачным к собственному излучению. В недрах облака возникает устойчивое плотное сгущение, которое астрономы называют ой.

Фрагментация вещества – распад молекулярно-пылевого облака на более ме ие части, дальнейшее которых приводит к появлению .

– астрономический объект, находящийся в стадии , из которого спустя некоторое время (для солнечной массы это время T ~ 10 8 лет) образуется нормальная .

При дальнейшем падении вещества из газовой оболочки на ядро (аккреция) масса последнего, а следовательно, температура и увеличиваются настолько, что газовое и лучистое давление сравниваются с силами . Сжатие ядра останавливается. Формирующаяся окружена непрозрачной для оптического излучения газопылевой оболочкой, пропускающей наружу лишь инфракрасное и более длинноволновое излучение. Такой объект ( -кокон) наблюдается как мощный источник радио и инфракрасного излучений.

При дальнейшем росте массы и температуры ядра световое давление останавливает аккрецию, а остатки оболочки рассеиваются в космическом пространстве. Появляется молодая , физические характеристики которой зависят от ее массы и начального химического состава.

Основным источником энергии рождающейся звезды является, по-видимому, энергия, высвобождающаяся при гравитационном сжатии. Это предположение следует из теоремы вириала: в стационарной системе сумма потенциальной энергии E п всех членов системы и удвоенной кинетической энергии 2 E к этих членов равна нулю:

E п + 2 E к = 0. (39)

Теорема справедлива для систем частиц, движущихся в ограниченной области пространства под действием сил, величина которых обратно пропорциональна квадрату расстояния между частицами. Отсюда следует, что тепловая (кинетическая) энергия равна половине гравитационной (потенциальной) энергии. При сжатии звезды полная энергия звезды уменьшается, при этом уменьшается гравитационная энергия: половина изменения гравитационной энергии уходит от звезды через излучение, за счет второй половины увеличивается тепловая энергия звезды.

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охватывает все области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за . Пока ещё не установлено, звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая приближается к главной последовательности.

По мере сжатия звезды начинает увеличиваться давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста центральной температуры, вызываемого сжатием, а затем и к её понижению. Для звёзд меньше 0,0767 масс Солнца этого не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и . Такие «недозвёзды» излучают энергии больше, чем образуется в ходе ядерных реакций, и относятся к так называемым ; их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся ядерных реакций .

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накапливалась масса ядра. У этих звёзд истечение массы и настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отта ивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

Главная последовательность

Температура звезды растет, пока в центральных областях не достигнет значений, достаточных для включения термоядерных реакций, которые затем становятся главным источником энергии звезды. Для массивных звезд (M > 1 ÷ 2 × M ⊙ ) – это «сгорание» водорода в углеродном цикле; для звезд с массой, равной или меньшей массы Солнца, энергия выделяется в протон-протонной реакции. переходит в стадию равновесия и занимает свое место на главной последовательности диаграммы Герцшпрунга-Рессела: у звезды большой массы температура в ядре очень высокая (T ≥ 3 × 10 7 K ), выработка энергии весьма интенсивна, – на главной последовательности занимает место выше Солнца в области ранних (O … A , (F )); у звезды небольшой массы температура в ядре сравнительно невысока (T ≤ 1,5 × 10 7 K ), выработка энергии не столь интенсивна, – на главной последовательности занимает место рядом или ниже Солнца в области поздних ((F ), G , K , M ).

На главной последовательности проводит до 90% времени, отпущенного природой на ее существование. Время нахождения звезды на стадии главной последовательности также зависит от массы. Так, с массой M ≈ 10 ÷ 20 × M ⊙ O или B находится в стадии главной последовательности около 10 7 лет, в то время как красный карлик K 5 с массой M ≈ 0,5 × M ⊙ находится в стадии главной последовательности около 10 11 лет, то есть время, сравнимое с возрастом Галактики. Массивные горячие звезды быстро переходят в следующие этапы эволюции, холодные карлики находятся в стадии главной последовательности все время существования Галактики. Можно предположить, что красные карлики являются основным типом населения Галактики.

Красный гигант (сверхгигант).

Быстрое выгорание водорода в центральных районах массивных звезд приводит к появлению у них гелиевого ядра. При доле массы водорода в несколько процентов в ядре практически полностью прекращается углеродная реакция превращения водорода в гелий. Ядро сжимается, что приводит к увеличению его температуры. В результате разогрева, вызванного гравитационным сжатием гелиевого ядра, «загорается» водород и начинается энерговыделение в тонком слое, расположенном между ядром и протяженной оболочкой звезды. Оболочка расширяется, радиус звезды увеличивается, эффективная температура уменьшается, растет. «уходит» с главной последовательности и переходит в следующую стадию эволюции – в стадию красного гиганта или, если масса звезды M > 10 × M ⊙ , в стадию красного сверхгиганта.

С ростом температуры и плотности в ядре начинает «гореть» гелий. При T ~ 2 × 10 8 K и r ~ 10 3 ¸ 10 4 г/см 3 начинается термоядерная реакция, которая называется тройным a -процессом: из трех a -частиц (ядер гелия 4 He ) образуется одно устойчивое ядро углерода 12 C . При массе ядра звезды M < 1,4 × M ⊙ тройной a -процесс приводит к взрывному характеру энерговыделения - гелиевой вспышке, которая для конкретной звезды может повторяться неоднократно.

В центральных областях массивных звезд, находящихся в стадии гиганта или сверхгиганта, увеличение температуры приводит к последовательному образованию углеродного, углеродно-кислородного и кислородного ядер. После выгорания углерода наступают реакции, в результате которых образуются более тяжелые химические элементы, возможно и ядра железа. Дальнейшая эволюция массивной звезды может привести к сбросу оболочки, вспышке звезды как Новой или , с последующим образованием объектов, которые являются заключительной стадией эволюции звезд: белого карлика, нейтронной звезды или черной дыры.

Завершающая стадия эволюции – стадия эволюции всех нормальных звезд после исчерпания этими ми термоядерного горючего; прекращение термоядерных реакций как источника энергии звезды; переход звезды в зависимости от ее массы в стадию белого карлика, или черной дыры.

Белые карлики - последняя стадия эволюции всех нормальных звезд с массой M < 3 ÷ 5 × M ⊙ после исчерпания этими ми термоядерного горючего. Пройдя стадию красного гиганта (или субгиганта), такая сбрасывает оболочку и оголяет ядро, которое, остывая, и становится белым карликом. Небольшой радиус (R б.к ~ 10 -2 × R ⊙ ) и белый или бело-голубой цвет (T б.к ~ 10 4 К) определили название этого класса астрономических объектов. Масса белого карлика всегда меньше 1,4 × M ⊙ - доказано, что белые карлики с большими массами существовать не могут. При массе, сравнимой с массой Солнца, и размерах, сравнимых с размерами больших планет Солнечной системы, белые карлики обладают огромной средней плотностью: ρ б.к ~ 10 6 г/см 3 , то есть гирька объемом 1 см 3 вещества белого карлика весит тонну! Ускорение свободного падения на поверхности g б.к ~ 10 8 см/с 2 (сравни с ускорением на поверхности Земли - g з ≈ 980 см/с 2). При такой гравитационной нагрузке на внутренние области звезды равновесное состояние белого карлика поддерживается давлением вырожденного газа (в основном, вырожденного электронного газа, так как вклад ионной компоненты мал). Напомним, что вырожденным называется газ, в котором отсутствует максвелловское распределение частиц по скоростям. В таком газе при определенных значениях температуры и плотности число частиц (электронов), имеющих любую скорость в пределах от v = 0 до v = v max , будет одинаковым. v max определяется плотностью и температурой газа. При массе белого карлика M б.к > 1,4 × M ⊙ максимальная скорость электронов в газе сравнима со скоростью света, вырожденный газ становится релятивистским и его давление уже неспособно противостоять гравитационному сжатию. Радиус карлика стремится к нулю - “схлопывается” в точку.

Тонкие горячие атмосферы белых карликов состоят либо из водорода, при этом других элементов в атмосфере практически не обнаруживается; либо из гелия, при этом водорода в атмосфере в сотни тысяч раз меньше, нежели в атмосферах нормальных звезд. По виду спектра белые карлики относятся к спектральным классам O, B, A, F. Чтобы “отличить” белые карлики от нормальных звезд, перед обозначением ставится буква D (DOVII, DBVII и т.д. D - первая буква в английском слове Degenerate - вырожденный). Источником излучения белого карлика является запас тепловой энергии, который белый карлик получил, будучи ядром звезды-родительницы. Многие белые карлики получили в наследство от родительницы и сильное магнитное поле, напряженность которого H ~ 10 8 Э. Полагают, что число белых карликов составляет около 10% от общего числа звезд Галактики.

На рис. 15 приведена фотография Сириуса - ярчайшей звезды неба (α Большого Пса; m v = -1 m ,46; класс A1V). Видимый на снимке диск является следствием фотографической иррадиации и дифракции света на объективе телескопа, то есть диск самой звезды на фотографии не разрешается. Лучи, идущие от фотографического диска Сириуса, - следы искажения волнового фронта светового потока на элементах оптики телескопа. Сириус находится на расстоянии 2,64 от Солнца, свет от Сириуса идет до Земли 8,6 лет - таким образом, это одна из самых близких к Солнцу звезд. Сириус в 2,2 раза массивнее Солнца; его M v = +1 m ,43, то есть наш сосед излучает энергии в 23 раза больше, нежели Солнце.

Рисунок 15.

Уникальность фотографии заключается в том, что вместе с изображением Сириуса удалось получить изображение его спутника – спутник яркой точкой “светится” слева от Сириуса. Сириус – телескопически : сам Сириус обозначается буквой А, а его спутник буквой В. Видимая звездная величина Сириуса В m v = +8 m ,43, то есть он почти в 10 000 раз слабее Сириуса А. Масса Сириуса В почти точно равна массе Солнца, радиус около 0,01 радиуса Солнца, температура поверхности около 12000К, однако излучает Сириус В в 400 раз меньше Солнца. Сириус В - типичный белый карлик. Более того, это первый белый карлик, обнаруженный, кстати, Альвеном Кларком в 1862 г при визуальном наблюдении в телескоп.

Сириус А и Сириус В обращаются вокруг общего с периодом 50 лет; расстояние между компонентами А и В всего 20 а.е.

По меткому замечанию В.М.Липунова, ““вызревают” внутри массивных звезд (с массой более 10 × M ⊙ )”. Ядра звезд, эволюционирующих в нейтронную звезду, имеют 1,4 × M ⊙ ≤ M ≤ 3 × M ⊙ ; после того, как иссякнут источники термоядерных реакций и -родительница вспышкой сбросит значительную часть вещества, эти ядра станут самостоятельными объектами звездного мира, обладающими весьма специфическими характеристиками. Сжатие ядра звезды-родительницы останавливается при плотности, сравнимой с ядерной (ρ н . з ~ 10 14 ÷ 10 15 г/см 3). При таких массе и плотности радиус родившейся всего 10 состоит из трех слоев. Наружный слой (или внешняя кора) образован кристаллической решеткой из атомных ядер железа (Fe ) с возможной небольшой примесью атомных ядер других металлов; толщина внешней коры всего около 600 м при радиусе 10 км. Под внешней корой находится еще одна внутренняя твердая кора, состоящая из атомов железа (Fe ), но эти атомы переобогащены нейтронами. Толщина этой коры 2 км. Внутренняя кора граничит с жидким нейтронным ядром, физические процессы в котором определяются замечательными свойствами нейтронной жидкости - сверхтекучестью и, при наличии в ней свободных электронов и протонов, сверхпроводимостью. Возможно, что в самом центре вещество может содержать мезоны и гипероны.

Быстро вращаются вокруг оси - от одного до сотен оборотов в секунду. Такое вращение при наличии магнитного поля (H ~ 10 13 ÷ 10 15 Э) часто приводит к наблюдаемому эффекту пульсации излучения звезды в разных диапазонах электромагнитных волн. Один из таких пульсаров мы видели внутри Крабовидной туманности.

Общее число скорость вращения уже недостаточна для эжекции частиц, поэтому такая не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду не может упасть, то есть аккреция вещества не происходи.

Аккретор (рентгеновский пульсар). Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов , разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит сто новение падающего вещества с поверхностью звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор. Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией.

Если является компонентой тесной двойной системы, то происходит “перекачка” вещества от нормальной звезды (второй компоненты) на нейтронную. Масса может превысить критическую (M > 3 × M ⊙ ), тогда нарушается гравитационная устойчивость звезды, уже ничто не может противостоять гравитационному сжатию, и “уходит” под свой гравитационный радиус

r g = 2 × G × M/c 2 , (40)

превращаясь в “черную дыру“. В приведенной формуле для r g: M - масса звезды, c - скорость света, G - гравитационная постоянная.

Черная дыра - объект, поле тяготения которого настолько велико, что ни частица, ни фотон, ни любое материальное тело не могут достигнуть второй космической скорости и вырваться во внешнее пространство.

Черная дыра является сингулярным объектом в том смысле, что характер протекания физических процессов внутри ее пока недоступен теоретическому описанию. Существование черных дыр следует из теоретических соображений, реально они могут находиться в центральных районах шаровых скоплений, квазаров, гигантских галактик, в том числе, и в центре Нашей галактики.

Привет дорогие читатели! Хотелось бы поговорить о прекрасном ночном небе. Почему о ночном? Спросите Вы. Потому, что на нем ярко видны звезды, эти прекрасные светящиеся маленькие точки на черно-синем фоне нашего неба. Но на самом деле они не маленькие, а просто огромные, а из -за большого расстояния кажутся такими крохотными .

Кто-нибудь из Вас представлял себе как рождаются звезды, как проживают свою жизнь, какая она у них вообще? Я предлагаю Вам сейчас прочесть эту статью и по ходу представить эволюцию звезд. Я подготовила парочку видео для наглядного примера 😉

Небо усеяно множеством звезд, среди которых разбросаны огромные облака пыли и газов, водорода в основном. Звезды рождаются именно в таких туманностях, или межзвездных областях.

Звезда живет настолько долго (до десятков миллиардов лет), что астрономам не под силу проследить жизнь от начала и до конца, хотя бы одной из них. Но зато у них есть возможность наблюдать за разными стадиями развития звезд.

Ученные объединили полученные данные, и смогли проследить за этапами жизни типичных звезд: момент рождения звезды в межзвездном облаке, ее молодость, средний возраст, старость и иногда весьма эффектную смерть.

Рождение звезды.


Возникновение звезды начинается с уплотнения вещества внутри туманности. Постепенно, образовавшееся уплотнение, уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса , выделяется энергия, которая разогревает пыль и газ и вызывает их свечение.

Возникает так называемая протозвезда . Температура и плотность вещества в ее центре, или ядре максимальные. Когда температура достигает отметки около 10 000 000°С, в газе начинают протекать термоядерные реакции.

Ядра атомов водорода начиняют соединяться и превращаются в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. Эта энергия, в процессе конвекции, переносится в поверхностный слой, а потом, в виде света и тепла излучается в космос. Таким вот образом, протозвезда превращается в настоящую звезду.

Излучение, которое исходит из ядра, разогревает газовую среду, создавая давление, которое направленное вовне, и таким образом, препятствуя гравитационному коллапсу звезды.

Результатом является, то, что она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии.

Астрономы звезду на этой стадии развития называют звездой главной последовательности , таким образом, указывая место, которое она занимает на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между температурой звезды и светимостью.

Протозвезды, имеющие небольшую массу, никогда не разогреваются до температур, которые необходимы для начала термоядерной реакции. Эти звезды, в результате сжатия, превращаются в тусклых красных карликов , или даже еще более тусклых коричневых карликов . Первая звезда коричневый карлик была открыта лишь 1987 году.

Гиганты и карлики.

Диаметр Солнца приблизительно равен 1 400 000 км, а температура его поверхности около 6 000°С, и оно излучает желтоватый свет. Оно на протяжении 5 млрд. лет входит в главную последовательность звезд.

Водородное «топливо» на такой звезде, приблизительно за 10 млрд. лет исчерпается, а в ее ядре останется, главным образом, гелий. Когда больше не остается чему «гореть», интенсивность излучения, направленного от ядра, уже не достаточна для уравновешивания гравитационного коллапса ядра.

Но той энергии, которая при этом выделяется, достаточно для того, чтобы разогреть окружающее вещество. В этой оболочке начинается синтез ядер водорода, выделяется больше энергии.

Звезда начинает ярче светиться, но теперь уже красноватым светом, и одновременно она еще и расширяется, увеличиваясь в размере в десятки раз. Теперь такая звезда называются красным гигантом .

Ядро красного гиганта сжимается, а температура возрастает до 100 000 000°С и более. Здесь происходит реакция синтеза ядер гелия, превращая его в углерод. Благодаря той энергии, которая при этом выделяется, звезда еще светится каких-нибудь 100 млн. лет.

После того как заканчивается гелий и реакции затухают, вся звезда постепенно, под влиянием гравитации, сжимается почти до размеров . Энергии, которая при этом выделяется, достаточно для того, чтобы звезда (теперь уже белый карлик) продолжала еще некоторое время ярко светиться.

Степень сжатия вещества в белом карлике очень высока и, следовательно, у него очень большая плотность – вес одной столовой ложки может достигать тысячи тонн. Таким вот образом проходит эволюция звезд размером с наше Солнце.

Видео показывающее эволюцию нашего Солнца в белого карлика

Жизненный цикл у звезды, масса которой в пять раз превышает массу Солнца, значительно короче, и она несколько иначе эволюционирует. Такая звезда намного ярче, а температура ее поверхности 25 000°С и более, период пребывания в главной последовательности звезд всего лишь около 100 млн. лет.

Когда такая звезда входит в стадию красного гиганта , температура в ее ядре превышает 600 000 000°С. В нем происходят реакции синтеза ядер углерода, который превращается в более тяжелые элементы, включая железо.

Звезда, под действием выделяемой энергии, расширяется до размеров, которые в сотни раз превышают ее первоначальные размеры. Звезду на этой стадии называют сверхгигантом .

В ядре внезапно прекращается процесс производства энергии, и оно в течение считаных секунд сжимается. При всем этом выделяется огромное количество энергии и образуется катастрофическая ударная волна.

Эта энергия проходит через всю звезду и выбрасывает значительную ее часть силой взрыва в космическое пространство, вызывая явление, которое известно как вспышка сверхновой звезды .

Для лучшего представления всего написанного, рассмотрим на схеме цикл эволюции звезд

В феврале 1987 года подобная вспышка наблюдалась в соседней галактике – Большом Магеллановом облаке. Эта сверхновая звезда в течение короткого времени светилась ярче целого триллиона Солнц.

Ядро сверхгиганта сжимается и образует небесное тело диаметром всего лишь 10-20 км, а плотность его настолько велика, что чайная ложка его вещества может весить 100 млн. тонн!!! Такое небесное тело состоит из нейтронов и называется нейтронной звездой .

Нейтронная звезда, которая только что образовалась, отличается большой скоростью вращения и очень сильным магнетизмом.

В результате создается мощное электромагнитное поле, которое испускает радиоволны и другие виды излучения. Они распространяются из магнитных полюсов звезды в форме лучей.

Эти лучи, из-за вращения звезды вокруг своей оси, как бы сканируют космическое пространство. Когда они проносятся мимо наших радиотелескопов, мы их воспринимаем как короткие вспышки, или импульсы (англ. Pulse). Поэтому такие звезды называются пульсарами .

Обнаружены пульсары были благодаря именно радиоволнам, которые они излучают. Сейчас стало известно, что многие из них излучают световые и рентгеновские импульсы.

Первый световой пульсар обнаружили в Крабовидной туманности. Его импульсы повторяются с периодичностью 30 раз в секунду.

Импульсы других пульсаров повторяются гораздо чаще: ПИР (пульсирующий источник радиоизлучения) 1937+21 вспыхивает 642 раза в секунду. Представить даже сложно такое!

Звезды, которые имеют наибольшую массу, превышающую в десятки раз массу Солнца, тоже вспыхивают, как сверхновые. Но из-за огромной массы, их коллапс имеет гораздо более катастрофический характер.

Разрушительное сжатие не прекращается даже на стадии образования нейтронной звезды, создавая область, в которой обычное вещество прекращает свое существование.

Остается только лишь одна гравитация, которая настолько сильная, что ничто, даже свет, не может избежать ее воздействия. Эта область называется черной дырой . Да уж, эволюция больших звезд страшная и очень опасная.

В этом видеоролике речь пойдет о том, как сверхновая превращается в пульсар и в черную дыру

Я не знаю как Вы, дорогие читатели, но лично я очень люблю и интересуюсь космосом и всем, что с ним связанно, это так загадочно и прекрасно, аж дух захватывает! Эволюция звезд нам много поведала о будущем нашей и всей .

Вселенная представляет собой постоянно меняющийся макромир, где каждый объект, субстанция или материя пребывают в состоянии трансформации и изменений. Эти процессы длятся миллиарды лет. В сравнении с продолжительностью человеческой жизни этот непостижимый умом временной отрезок времени огромен. В масштабах космоса эти изменения достаточно скоротечны. Звезды, которые мы сейчас наблюдаем на ночном небосклоне, были такими же и тысячи лет назад, когда их могли видеть египетские фараоны, однако на самом деле все это время ни на секунду не прекращалось изменение физических характеристик небесных светил. Звезды рождаются, живут и непременно стареют — эволюция звезд идет своим чередом.

Положение звезд созвездия Большая Медведица в разные исторические периоды в интервале 100000 лет назад — наше время и через 100 тыс. лет

Интерпретация эволюции звезд с точки зрения обывателя

Для обывателя космос представляется миром спокойствия и безмолвия. На самом деле Вселенная является гигантской физической лабораторией, где происходят грандиозные преобразования, в ходе которых меняется химический состав, физические характеристики и строение звезд. Жизнь звезды длится до тех пор, пока она светит и отдает тепло. Однако такое блистательное состояние не вечно. За ярким рождением следует период зрелости звезды, который неизбежно заканчивается старением небесного тела и его смертью.

Образование протозвезды из газопылевого облака 5-7 млрд. лет назад

Вся наша информация о звездах сегодня умещается в рамки науки. Термодинамика дает нам объяснение процессов гидростатического и теплового равновесия, в котором пребывает звездная материя. Ядерная и квантовая физика позволяют понять сложный процесс ядерного синтеза, благодаря которому звезда существует, излучая тепло и даря свет окружающему пространству. При рождении звезды формируется гидростатическое и тепловое равновесие, поддерживаемое за счет собственных источников энергии. На закате блистательной звездной карьеры это равновесие нарушается. Наступает черед необратимых процессов, итогом которых становится разрушение звезды или коллапс — грандиозный процесс мгновенной и блестящей смерти небесного светила.

Взрыв сверхновой — яркий финал жизни звезды, родившейся в первые годы существования Вселенной

Изменение физических характеристик звезд обусловлено их массой. На скорость эволюции объектов оказывает влияние их химический состав и в некоторой степени существующие астрофизические параметры — скорость вращения и состояние магнитного поля. Точно говорить о том, как все происходит на самом деле, не представляется возможным ввиду огромной продолжительности описываемых процессов. Скорость эволюции, этапы трансформации зависят от времени рождения звезды и ее месторасположения во Вселенной на момент рождения.

Эволюция звезд с научной точки зрения

Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

  • ядерная временная шкала;
  • тепловой отрезок жизни звезды;
  • динамический отрезок (финальный) жизни светила.

В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

Учитывая тот факт, что светимость звезд определяется их массой, в момент сжатия объекта его яркость в пространстве не меняется.

Звезда на пути к главной последовательности

Формирование звезды происходит в соответствии с динамической временной шкалой. Звездный газ свободно падает внутрь к центру, увеличивая плотность и давление в недрах будущего объекта. Чем выше плотность в центре газового шара, тем больше температура внутри объекта. С этого момента основной энергией небесного тела становится тепло. Чем больше плотность и выше температура, тем больше давление в недрах будущей звезды. Свободное падение молекул и атомов прекращается, процесс сжатия звездного газа приостанавливается. Такое состояние объекта обычно называют протозвездой. Объект на 90% состоит из молекулярного водорода. При достижении температуры 1800К водород переходит в атомарное состояние. В процессе распада расходуется энергия, повышение температуры замедляется.

Вселенная на 75% состоит из молекулярного водорода, который в процессе формирования протозвезд превращается в атомарный водород — ядерное топливо звезды

В подобном состоянии давление внутри газового шара уменьшается, тем самым давая свободу силе сжатия. Такая последовательность повторяется каждый раз, когда сначала ионизируется весь водород, а затем наступает черед ионизации гелия. При температуре 10⁵ К газ ионизируется полностью, сжатие звезды останавливается, возникает гидростатическое равновесие объекта. Дальнейшая эволюция звезды будет происходить в соответствии с тепловой временной шкалой, гораздо медленнее и последовательнее.

Радиус протозвезды с момента начала формирования сокращается с 100 а.е. до ¼ а.е. Объект пребывает в середине газового облака. В результате аккреции частиц из внешних областей облака звездного газа масса звезды будет постоянно увеличиваться. Следовательно, температура внутри объекта будет расти, сопровождая процесс конвекции — перенос энергии от внутренних слоев звезды к ее внешнему краю. Впоследствии с ростом температуры в недрах небесного тела конвекция сменяется лучистым переносом, сдвигаясь к поверхности звезды. В этом момент светимость объекта стремительно увеличивается, растет и температура поверхностных слоев звездного шара.

Процессы конвекции и лучистый перенос во вновь образовавшейся звезде перед началом реакций термоядерного синтеза

К примеру, для звезд, у которых масса идентична массе нашего Солнца, сжатие протозвездного облака происходит всего за несколько сотен лет. Что касается финальной стадии образования объекта, то конденсация звездной материи растягивается уже на миллионы лет. Солнце движется к главной последовательности достаточно быстро, и этот путь займет сотню миллионов или миллиарды лет. Другими словами, чем больше масса звезды, тем больше промежуток времени, затрачиваемый на формирование полноценной звезды. Звезда с массой в 15М будет двигаться по пути к главной последовательности уже значительно дольше — порядка 60 тыс. лет.

Фаза главной последовательности

Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.

Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды

С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода. Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.

Менее массивные звезды горят на ночном небосклоне значительно дольше. Так, звезда с массой 0,25М будет пребывать в фазе главной последовательности десятки миллиардов лет.

Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.

Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.

У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.

Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер

В нижней части последовательности сосредоточены объекты, где доминируют звезды с массой равной массе нашего Солнца и немногим больше. Мнимой границей между верхней и нижней части главной последовательности являются объекты, масса которых составляет – 1,5М.

Последующие этапы эволюции звезд

Каждый из вариантов развития состояния звезды определяется ее массой и отрезком времени, в течение которого происходит трансформация звездной материи. Однако Вселенная представляет собой многогранный и сложный механизм, поэтому эволюция звезд может идти другими путями.

Путешествуя по главной последовательности, звезда с массой, примерно равной массе Солнца, имеет три основных варианта маршрута:

  1. спокойно прожить свою жизнь и мирно почить в бескрайних просторах Вселенной;
  2. перейти в фазу красного гиганта и медленно стареть;
  3. перейти в категорию белых карликов, вспыхнуть сверхновой и превратиться в нейтронную звезду.

Возможные варианты эволюции протозвезд в зависимости от времени, химического состав объектов и их массы

После главной последовательности наступает фаза гиганта. К этому времени запасы водорода в недрах звезды полностью заканчиваются, центральная область объекта представляет собой гелиевое ядро, а термоядерные реакция смещаются к поверхности объекта. Под действием термоядерного синтеза оболочка расширяется, а вот масса гелиевого ядра растет. Обычная звезда превращается в красного гиганта.

Фаза гиганта и ее особенности

У звезд с небольшой массой плотность ядра становится колоссальной, превращая звездную материю в вырожденный релятивистский газ. Если масса звезды чуть больше 0,26М, рост давления и температуры приводит к началу синтеза гелия, охватывающего всю центральную область объекта. С этого момента температура звезды стремительно растет. Главная особенность процесса заключается в том, что вырожденный газ не имеет способности расширяться. Под воздействием высокой температуры увеличивается только скорость деления гелия, что сопровождается взрывной реакцией. В такие моменты мы можем наблюдать гелиевую вспышку. Яркость объекта увеличивается в сотни раз, однако агония звезды продолжается. Происходит переход звезды в новое состояние, где все термодинамические процессы происходят в гелиевом ядре и в разряженной внешней оболочке.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза

Такое состояние является временным и не отличается устойчивостью. Звездная материя постоянно перемешивается, при этом значительная ее часть выбрасывается в окружающее пространство, образуя планетарную туманность. В центре остается горячее ядро, которое называется белым карликом .

Для звезд большой массы перечисленные процессы протекают не так катастрофически. На смену гелиевому горению приходит ядерная реакция деления углерода и кремния. В конце концов звездное ядро превратится в звездное железо. Фаза гиганта определяется массой звезды. Чем больше масса объекта, тем меньше температура в его центре. Этого явно недостаточно для запуска ядерной реакции деления углерода и других элементов.

Судьба белого карлика – нейтронная звезда или черная дыра

Оказавшись в состоянии белого карлика, объект пребывает в крайне неустойчивом состоянии. Прекратившиеся ядерные реакции приводят к падению давления, ядро переходит в состояние коллапса. Энергия, выделяемая в данном случае, расходуется на распад железа до атомов гелия, который дальше распадается на протоны и нейтроны. Запущенный процесс развивается со стремительной скоростью. Коллапс звезды характеризует динамический отрезок шкалы и занимает по времени долю секунды. Возгорание остатков ядерного топлива происходит взрывным образом, освобождая в доли секунды колоссальный объем энергии. Этого вполне достаточно, чтобы взорвать верхние слои объекта. Финальной стадией белого карлика является вспышка сверхновой.

Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа).

Оставшееся сверхплотное ядро будет представлять собой скопление протонов и электронов, которые сталкиваясь друг с другом, образуют нейтроны. Вселенная пополнилась новым объектом — нейтронной звездой. Из-за высокой плотности ядро становится вырожденным, процесс коллапсирования ядра останавливается. Если бы масса звезды была достаточно большой, коллапс мог бы продолжаться до тех пор, пока остатки звездной материи не упадут окончательно в центре объекта, образуя черную дыру.

Объяснение финальной части эволюции звезд

Для нормальных равновесных звезд описанные процессы эволюции маловероятны. Однако существование белых карликов и нейтронных звезд доказывает реальное существование процессов сжатия звездной материи. Незначительное количество подобных объектов во Вселенной свидетельствует о скоротечности их существования. Финальный этап эволюции звезд можно представить в виде последовательной цепочки двух типов:

  • нормальная звезда — красный гигант – сброс внешних слоев – белый карлик;
  • массивная звезда – красный сверхгигант – взрыв сверхновой – нейтронная звезда или черная дыра – небытие.

Схема эволюции звезд. Варианты продолжения жизни звезд вне главной последовательности.

Объяснить с точки зрения науки происходящие процессы достаточно трудно. Ученые-ядерщики сходятся во мнении, что в случае с финальным этапом эволюции звезд мы имеем дело с усталостью материи. В результате длительного механического, термодинамического воздействия материя меняет свои физические свойства. Усталостью звездной материи, истощенной длительными ядерными реакциями, можно объяснить появление вырожденного электронного газа, его последующую нейтронизацию и аннигиляцию. Если все перечисленные процессы проходят от начала до конца, звездная материя перестает быть физической субстанцией – звезда исчезает в пространстве, не оставляя после себя ничего.

Межзвездные пузыри и газопылевые облака, являющиеся местом рождения звезд, не могут пополняться только за счет исчезнувших и взорвавшихся звезд. Вселенная и галактики находятся в равновесном состоянии. Постоянно происходит потеря массы, плотность межзвездного пространства уменьшается в одной части космического пространства. Следовательно, в другой части Вселенной создаются условия для образования новых звезд. Другими словами, работает схема: если в одном месте убыло определенное количество материи, в другом месте Вселенной такой же объем материи появился в другой форме.

В заключение

Изучая эволюцию звезд, мы приходим к выводу, что Вселенная представляет собой гигантский разряженный раствор, в котором часть материи трансформируется в молекулы водорода, являющегося строительным материалом для звезд. Другая часть растворяется в пространстве, исчезая из сферы материальных ощущений. Черная дыра в этом смысле является местом перехода всего материального в антиматерию. Постичь до конца смысл происходящего достаточно трудно, особенно если при изучении эволюции звезд делать ставку только на законы ядерной, квантовой физики и термодинамики. К изучению данного вопроса следует подключать теорию относительной вероятности, которая допускает искривление пространства, позволяющее трансформироваться одной энергии в другую, одного состояния в другое.