Абиотические факторы среды. Абиотические, биотические и антропогенные факторы среды

    АБИОТИЧЕСКИЕ ФАКТОРЫ, различные факторы, не относящиеся к живым организмам, как благоприятные, так и вредные, находящиеся в среде, окружающей живые организмы. Сюда включают, например, атмосферу, климат, геологические структуры, количество света,… … Научно-технический энциклопедический словарь

    Среды, компоненты и явления неживой, неорганической природы (климат, свет, химические элементы и вещества, температура, давление и движение среды, почва и др.), прямо или косвенно воздействующие на организмы. Экологический энциклопедический… … Экологический словарь

    абиотические факторы - abiotiniai veiksniai statusas T sritis ekologija ir aplinkotyra apibrėžtis Fiziniai (temperatūra, aplinkos slėgis, klampumas, šviesos, jonizuojančioji spinduliuotė, grunto granulometrinės savybės) ir cheminiai (atmosferos, vandens, grunto cheminė … Ekologijos terminų aiškinamasis žodynas

    Факторы неорганической природы, влияющие на живые организмы … Большой медицинский словарь

    Абиотические факторы - факторы неорганической, или неживой, среды в группе экологических факторов адаптации, действующих среди биологических видов и их сообществ, подразделяющиеся на климатические (свет, температура воздуха, воды, почвы, влажность, ветер), почвенно… … Начала современного естествознания

    АБИОТИЧЕСКИЕ ФАКТОРЫ - Факторы неорганической среды, влияющие на живые организмы. К ним относятся: состав атмосферы, морских и пресных вод, почва, климат, а также зоогигиенические условия животноводческих помещений … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    АБИОТИЧЕСКИЕ ФАКТОРЫ - (от греч. a отрицательная приставка и biotikos жизненный, живой), факторы неорганич. среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, мор. и пресных вод, почвы, климатич. характеристики (темп pa, давление и др.). Совокупность … Сельско-хозяйственный энциклопедический словарь

    абиотические факторы - (от греч. а — отрицательная приставка и biōtikós — жизненный, живой), факторы неорганической среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, морских и пресных вод, почвы, климатические характеристики (температура … Сельское хозяйство. Большой энциклопедический словарь

    АБИОТИЧЕСКИЕ ФАКТОРЫ - среды, совокупность условий неорганической среды, влияющих на организм. Химические А. ф.: химический состав атмосферы, морских и пресных вод, почвы или донных отложений. Физические А. ф.: температура, свет, барометрическое давление, ветер,… … Ветеринарный энциклопедический словарь

    Среды, совокупность условий неорганической среды, влияющих на организмы. А. ф. делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические, или климатические (температура,… … Большая советская энциклопедия

Книги

  • Экология. Учебник. Гриф МО РФ
  • Экология. Учебник. Гриф МО РФ , Потапов А.Д.. В учебнике рассмотрены основные закономерности экологии как науки о взаимодействии живых организмов со средой их жизнеобитания. Изложены главные принципы геоэкологии как науки о главных…

К ним относят процент влажности воздуха, температуру, количество осадков и т.д.

Для насекомых постоянство всех этих факторов очень важно, ведь большинство из них способно выживать в достаточно узком «коридоре» их значений. Особенно это актуально для тропических и субтропических видов: даже кратковременное похолодание и понижение влажности способно привести к их гибели или воспрепятствовать , что тоже понесет за собой неблагоприятные последствия.

Влияние климатических факторов на насекомых происходит постоянно. Например, в начале дождливого лета происходит кратковременное снижение численности летающих видов, живущих вблизи от воды. Незадолго до дождя влажность воздуха возрастает. мошек намокают и становятся тяжелее, в результате чего они начинают летать практически над самой водой. Это делает их легкой добычей рыб; кроме того, при низком и медленном им сложнее скрываться от хищных птиц - ласточки, стрижи, пеночки и другие насекомоядные тоже перемещаются ниже и ловят их в большом количестве. Правда, затем, при интенсивных осадках, популяции этих насекомых быстро восстанавливаются, так как влага способствует развитию их .

Орографические факторы

Рельеф земной поверхности, крутизна склонов, высота места обитания над уровнем моря.

В наибольшей степени орографические факторы действуют на позвоночных, однако насекомые тоже бывают подвержены их влиянию.

В условиях высокогорья живет не так много видов. Низкая температура, короткое лето, ветра, разреженность воздуха и небольшое количество питательных веществ не позволяет насекомым селиться там так же интенсивно, как на умеренных высотах. Тем не менее, каждый вид находит свою экологическую нишу. Бабочки лишайницы обитают в горах на высоте до 5700 м над уровнем моря (фото) , а ледниковые блохи «добрались» до высот около 6000 м - они даже способны выдерживать замораживание и снова оживать при оттаивании.

Химические факторы

К ним относят газовый состав воздуха, минеральный состав воды и др.

Большинство насекомых ведут наземный образ жизни, и им требуется такой же состав воздуха, как и человеку. Однако некоторые из них способны переносить разреженный воздух высокогорий или насыщенную тяжелыми газами атмосферу пещер. У многих вообще живут в воде (стрекозы, поденки).

Эдафические факторы

Кислотность, механический и химический состав почвы, ее воздухопроницаемость и плотность.

Для большинства насекомых, живущих в земле или откладывающих в почву, очень важны ее свойства. Например, медведка или цикад не смогут там жить, если почва будет плотная, глинистая или каменистая. Им нужна рыхлая земля, в которой они смогут проделывать ходы, поедая корни растений.

Даже виды, живущие достаточно глубоко в земле, дышат атмосферным воздухом, поэтому возможность их существования напрямую зависит от воздухопроницаемости почвы. Так, на глубине 5 м, в абсолютно безвоздушном пространстве, невозможно найти ни одно насекомое.

Физические факторы

Шум, гамма-излучение, электромагнитные поля, интенсивность солнечного излучения.

Все насекомые стремятся избегать крупных городов с развитой промышленностью и транспортом, так как большинство «индустриальных» физических явлений негативно влияют на их жизнь. Природные же факторы (солнечное излучение) могут действовать на них двояко, в зависимости от того, при какой освещенности и длине светового дня они привыкли жить. Многие виды любят солнце, но некоторые ночные бабочки и жуки его не переносят. (фото)

Абиотические факторы и миграции насекомых

Влияние насекомых на абиотические факторы

Всегда считалось, что взаимосвязь абиотических факторов и жизни насекомых односторонняя, то есть первые влияют на существование вторых. Тем не менее, при большой численности тех или иных видов они тоже способны оказывать более или менее выраженное воздействие на факторы неживой природы. Например, термиты, общая биомасса которых сопоставима с биомассой всех наземных позвоночных животных, в процессе жизнедеятельности производят метан, участвуя в образовании парниковых газов.

Все живое на Земле связано со средой обитания, которая включает разнообразные географические области и населяющие их сообщества живых организмов. По характеру действия связи организма со средой могут быть абиотическими (сюда относятся факторы неживой природы - физические и химические условия среды) и биотическими (факторы живой природы - межвидовые и внутривидовые взаимоотношения).

Жизнедеятельность организмов невозможна без постоянного притока энергии извне. Ее источником является Солнце. Вращение Земли вокруг своей оси приводит к неравномерному распределению энергии Солнца, его теплового излучения. В связи с этим атмосфера над сушей и океаном нагревается неодинаково, а различия в температуре местности и давлении вызывают перемещения воздушных масс, изменение влажности воздуха, что влияет на ход химических реакций, физических превращений и прямо или косвенно - на все биологические явления (характер расселения жизни, биоритмы и т. п.). Регулирующее влияние на плотность жизни оказывает комплекс факторов: свет, температура, вода, минеральные питательные вещества и др. Эволюция жизни осуществлялась в направлении эффективного приспособления к этим факторам: "колебаниям влажности, освещения, температуры, ветра, силы тяжести и др. Взаимосвязи организмов между собой и со средой обитания изучает наука экологи я. Рассмотрим значение, отдельных экологических факторов.

Свет - основной источник энергии на Земле. Природа света двойственна: с одной стороны он представляет собой поток элементарных физических частиц - корпускул, или фотонов, не имеющих заряда, с другой - обладает волновыми свойствами. Чем меньше длина волны фотона, тем выше его энергия, и наоборот. Энергия фотонов служит источником обеспечения энергетических потребностей растений при фотосинтезе, поэтому зеленое растение не может существовать без света.

Свет (освещенность) представляет собой мощный стимул активности организмов - фотопериодизма в жизни растений (рост, цветение, опадание листвы) и животных (линька, накопление жира, миграции и размножение птиц и млекопитающих, наступление стадии покоя - диапаузы, поведенческие реакции и др.). Продолжительность светового дня зависит от географической широты. С этим связано существование растений длинного дня, цветение которых наступает при продолжительности светлого периода суток 12 ч и более (картофель, рожь, овес, пшеница и др.), и растений короткого дня с фотопериодом 12 ч и менее (большинство тропических цветковых растений, соя, просо, конопля, кукуруза и многие другие растения умеренной зоны). Но есть растения, цветение которых не зависит от длины дня (томаты, одуванчик и др.). Ритмы освещенности вызывают у животных различную активность в дневное и ночное время суток или в сумерки, а также сезонные явления: весной - подготовку к размножению, осенью - к зимней спячке, линьку.

Коротковолновая радиация Солнца (290 нм) представляет собой ультрафиолетовые лучи (УФ). Большая часть их поглощается слоем озона в верхних участках атмосферы; на Землю проникают УФ-лучи с меньшей энергией (300-400 нм), которые губительны для многих микроорганизмов и их спор; в организме человека и животных эти лучи активируют синтез витамина Д из холестерина и образование пигментов кожи и глаза. Средневолновая радиация (600-700 нм) представляет собой оранжевую часть спектра и поглощается растением при фотосинтезе.

Как проявление приспособительных реакций на смену дня и ночи у животных и человека наблюдается суточная ритмичность интенсивности обмена веществ, частоты дыхания, сердечных сокращений и уровня кровяного давления, температуры тела, клеточных делений и т.д. У человека выявлено более ста физиологических процессов биоритмологического характера, благодаря которым у здоровых людей наблюдается согласованность различных функций. Исследование биоритмов имеет большое значение для разработки мер, облегчающих адаптацию человека к новым условиям при дальних перелетах, переселении людей в районы Сибири, Дальнего Востока, Севера, Антарктиды.

Считают, что нарушение регуляторных механизмов по поддержанию внутренней среды организма (гомеостаза) - последствие урбанизации и индустриализации: чем дольше организм изолирован от внешних климатических факторов и находится в комфортных условиях микроклимата помещения, тем заметнее снижаются его приспособительные реакции к перемене погодных факторов, нарушается способность к терморегуляции, чаще возникают расстройства сердечно-сосудистой деятельности.

Биологический эффект фотонов состоит в том, что их энергия в организме животных вызывает возбужденное состояние электронов в молекулах пигментов (порфиринов, каротиноидов, флавинов), которые возникший избыток своей энергии передают другим молекулам, и таким путем запускается цепь химических превращений. Белки и нуклеиновые кислоты поглощают УФ-лучи с длиной волны 250-320 нм, что может вызвать генетический эффект (генные мутации); лучи меньшей длины волны (200 нм и меньше) не только возбуждают молекулы, но и могут их разрушить.

В последние годы большое внимание уделяется изучению процесса фотореактивации - способности клеток Микроорганизмов ослаблять и полностью устранять повреждающий эффект УФ-облучения ДНК, если облученные клетки выращивать затем не в темноте, а на видимом свету. Фотореактивация - явление универсальное, осуществляется при участии специфических клеточиых ферментов, действие которых активируется квантами света определенной длины волны.

Температура оказывает регулирующее влияние на многие процессы жизни растений и животных, изменяя интенсивность обмена веществ. Активность клеточных ферментов лежит в пределах от 10 до 40 °С, при низких температурах реакции идут замедленно, но при достижении оптимальной температуры активность ферментов восстанавливается. Пределы выносливости организмов в отношении температурного фактора для большинства видов не превышают 40-45 °С, пониженные температуры оказывают менее неблагоприятное воздействие на организм, чем высокие. Жизнедеятельность организма осуществляется в пределах от -4 до 45 °С. Однако небольшая группа низших организмов способна обитать в горячих источниках при температуре 85 °С (серные бактерии, синезеленые водоросли, некоторые круглые черви), многие низшие организмы легко выдерживают очень низкие температуры (их устойчивость к замерзанию объясняется высокой концентрацией солей и органических веществ в цитоплазме).

У каждого вида животных, растений и микроорганизмов выработались необходимые приспособления как к высоким, так и к низким температурам. Так, многие насекомые при наступлении холодов скрываются в почве, под корой деревьев, в трещинах скал, лягушки зарываются в ил на дне водоемов, некоторые наземные животные впадают в спячку и оцепенение. Приспособление от перегрева в жаркое время года у растений выражается в увеличении испарения воды через устьица, у животных - в виде испарения воды через дыхательную систему и кожные покровы. Животные, не обладающие системой активной терморегуляции (холоднокровные, или пойкилотермные), колебания внешней температуры переносят плохо, поэтому их ареалы на суше относительно ограничены (амфибии, рептилии). С наступлением холодов у них снижается обмен веществ, потребление пищи и кислорода, они погружаются в спячку или впадают в состояние анабиоза (резкое замедление жизненных процессов при сохранении способности к оживлению), а при благоприятных погодных условиях пробуждаются и снова начинают активную жизнь. Споры и семена растений, а среди животных - инфузории, коловратки, клопы, клещи и др. - могут много лет находиться в состоянии анабиоза. Теплокровность у млекопитающих и птиц дает им возможность переносить неблагоприятные условия в активном состоянии, пользуясь убежищами, поэтому они в меньшей степени зависят от окружающей среды. В период чрезмерного повышения температуры в условиях пустыни животные приспособились переносить жару путем погружения в летнюю спячку. Растения пустынь и полупустынь весной за очень короткий срок завершают вегетацию и после созревания семян сбрасывают листву, вступая в фазу покоя (тюльпаны, мятлик луковичный, иерихонская роза и др.).

Вода. Энергией Солнца вода поднимается с поверхности морей и океанов и возвращается на Землю в виде разнообразных осадков, оказывая разностороннее влияние на организмы. Вода - важнейший компонент клетки, на ее долю приходится 60-80% ее массы. Биологическое значение воды обусловлено ее физико-химическими свойствами. Молекула воды полярна, поэтому она способна притягиваться к различным другим молекулам и ослаблять интенсивность взаимодействия между зарядами этих молекул, образуя с ними гидраты, т. е. выступать в качестве растворителя. Многие, вещества вступают в разнообразные химические реакции только в присутствии воды.

Диэлектрические свойства, наличие связей между молекулами обусловливают большую теплоемкость воды, что создает в живых системах "тепловой буфер", предохраняя неустойчивые структуры клетки от повреждения при местном кратковременном освобождении тепловой энергии. Поглощая тепло при переходе из жидкого в газообразное состояние, вода производит охлаждающий; эффект испарения, используемый организмами для регуляции температуры тела. Благодаря большой теплоемкости вода играет роль основного терморегулятора климата. Ее медленное нагревание и охлаждение регулируют колебания температуры океанов и озер: летом и днем в них накапливается тепло, которое они отдают зимой и ночью. Стабилизации климата способствует также постоянный обмен диоксидом углерода между воздушной и водной оболочками земного шара и горными породами, а также растительным и животным миром. Вода выполняет транспортную роль в перемещении веществ почвы сверху вниз и в обратном направлении. В почве они служит средой обитания для одноклеточных организмов (амебы, жгутиковые, инфузории, водоросли).

В зависимости от режима влаги растения в местах и обычного произрастания подразделяются на гигрофиты-растения избыточного увлажненных мест, мезофиты-растения достаточно увлажненных мест и ксерофиты - растения сухих местообитаний. Есть еще группа водных цветковых растений - гидрофиты, которые обитают в водной среде (стрелолист, элодея, роголистник). Недостаток влаги служит ограничивающим фактором, определяющим границы жизни и ее зональное распределение. При недостатке воды у животных и растений вырабатываются приспособления к ее добыванию и сохранению. Одна из функций листопада - приспособление против избыточной потери воды. У растений засушливых мест листья мелкие, иногда в форме чешуек (в этом случае стебель принимает на себя функцию фотосинтеза); той же цели служит распределение устьиц на листе, которое может уменьшать испарение воды. Животные в условиях сильно пониженной влажности во избежание потери воды активны ночью, днем они скрываются в норах и даже впадают в оцепенение или спячку. Грызуны не пьют воду, а пополняют ее с растительной пищей. Своеобразным резервуаром воды для животных пустынь являются жировые отложения (горб у верблюда, подкожные отложения жира у грызунов, жировое тело у насекомых), из которых поступает вода, образующаяся в организме при окислительных реакциях в ходе расщепления жира. Таким образом, все факты приспособленности организмов к условиям жизни - яркая иллюстрация целесообразности в живой природе, возникшей под влиянием естественного отбора.

Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содер жащиеся в горных породах; кроме того, оно поступает из космоса. Из трех видов ионизирующего излучения, имеющих важ-ное экологическое значение, два представляют собой корпу-скулярное излучение (альфа- и бета-частицы), а третье- электромагнитное (гамма.-излучение и близкое ему рентге-новское излучение). Гамма-излучение легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути.

В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее, губительное действие; человек отличается особой чувствительностью.
Загрязняющие вещества. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.

К 1-й группе относятся сернистый ангидрид, углекислый газ, оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения.

Во 2-ю группу входят искусственные вещества, обла-дающие специальными свойствами, удовлетворяющими по-требности человека:пестициды, используемые для борьбы с животными--вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды - средства для борьбы с вредныминасекомыми и гербициды --. средства для борьбы с сорняками.

Все они обладают определенной токсичностью (ядовитостью) для человека.

К абиотическим факторам относятся также атмосферные газы, минеральные вещества, барометрическое давление, движение воздушных масс и гидросферы (течение), минеральная основа почвы, соленость воды и почвы.

Остановимся на значении минеральных элементов . Ряд неорганических веществ находится в организме в составе солей, а при диссоциации образуют ионы (катионы и анионы): Na+, Mg2+, РО43-, Сl-, К+, Са2+, СО32-, NO3-. Значение ионного состава в клетке выявляется на многих сторонах ее жизнедеятельности. Например, калий избирательно взаимодействует с сократительным белком мышц - миозином, снижая вязкость клеточного сока и вызывая расслабление мышц. Кальций усиливает вязкость цитоплазмы и стимулирует мышечное сокращение, снижает порог возбудимости нервов и освобождается из мембранной системы при мышечном сокращении. В больших дозах кальций потребляется моллюсками и позвоночными, которым он необходим для роста раковины и костей. Натрия много у животных преимущественно во внеклеточной жидкости, а калия - внутри клетки; их взаимоперемещение создает разность электрических потенциалов между жидкостями внутри и вне клеток, что лежит в основе передачи нервных импульсов.

Ионы магния оказывают влияние на агрегацию рибосом: при снижении их концентрации рибосома распадается на две части. Магний входит в состав молекулы хлорофилла и некоторых ферментов. Для осуществления фотосинтеза растениям необходимы Mn, Fe, Cl, Zn; для азотистого обмена - Мо, В, Со, Сu, Si. В состав молекулы гемоглобина входит железо, в состав гормона щитовидной железы - йод. Цинк участвует во многих реакциях гидролиза, разрывая связи между атомами углерода и кислорода. Отсутствие или недостатокNa+, Mg2+, К+, Са2+, ведет к потере возбудимости клетки и ее гибели.
В природных условиях недостаток тех или других микроэлементов приводит к развитию эндемичных (свойственных только определенной местности) заболеваний человека: эндемического зоба (недостаток йода в питьевой воде), флюороза и крапчатости зубов (избыточное поступление в организм фтора) и др. Недостаток меди в травах, произрастающих на болотистых и торфяных почвах, ведет к анемии у крупного рогатого скота, расстройству пищеварительной системы, поражению центральной нервной системы, изменению цвета шерсти и т. д.

Нежелателен также избыток микроэлементов. В частности, в некоторых местностях известен стронциевый рахит и хронический молибденовый токсикоз у животных понос у крупного рогатого скота, падение удоя, изменение цвета шерсти). Многие вопросы о роли микроэлементов в возникновении тех или иных физиологических нарушений изучены пока недостаточно.

Свет относится к основным факторам внешней среды. Без света невозможна фотосинтетическая деятельность растений, а без последней немыслима жизнь вообще, поскольку зеленые растения обладают способностью продуцировать необходимый для всех живых существ кислород. Кроме того, свет является единственным источником тепла на планете Земля. Он оказывает непосредственное воздействие на химические и физические процессы, происходящие в организмах, влияет на обмен веществ.

Многие морфологические и поведенческие характеристики различных организмов связаны с воздействием на них света. Деятельность некоторых внутренних органов животных также тесно связана с освещением. Поведение животных, например сезонные перелеты, кладка яиц, ухаживание за самками, весенний гон, связано с продолжительностью светового дня.

В экологии под термином «свет» подразумевается весь диапазон солнечного излучения, достигающего земной поверхности. Спектр распределения энергии излучения Солнца за пределами земной атмосферы показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % — в видимой и 10 % — в ультрафиолетовой и рентгеновской областях.

Для живого вещества важны качественные признаки света — длина волны, интенсивность и продолжительность воздействия. Различают ближнее ультрафиолетовое излучение (400-200 нм) и дальнее, или вакуумное (200-10 нм). Источники ультрафиолетового излучения — высокотемпературная плазма, ускоренные электроны, некоторые лазеры, Солнце, звезды и др. Биологическое действие ультрафиолетового излучения обусловлено химическими изменениями поглощающих их молекул живых клеток, главным образом молекул нуклеиновых кислот (ДНК и РНК) и белков, и выражается в нарушениях деления, возникновении мутаций и гибели клеток.

Часть солнечных лучей, преодолев огромное расстояние, достигает поверхности Земли, освещает и обогревает ее. Подсчитано, что на нашу планету поступает около одной двухмиллиардной части солнечной энергии, а из этого количества лишь 0,1-0,2 % используется зелеными растениями для создания органического вещества. Каждому квадратному метру планеты достается в среднем по 1,3 кВт энергии Солнца. Ее хватило бы для работы электрического чайника или утюга.

Условия освещения играют исключительную роль в жизни растений: от интенсивности солнечного освещения зависит их продуктивность, производительность. Однако световой режим на Земле довольно разнообразный. В лесу он иной, нежели на лугу. Освещение в лиственном и темнохвойном еловом лесу заметно различается.

Свет управляет ростом растений: они растут в направлении большей освещенности. Их чувствительность к свету столь велика, что побеги некоторых растений, в течение дня содержащиеся в темноте, реагируют на вспышку света, длящуюся всего две тысячные доли секунды.

Все растения по отношению к свету можно разделить на три группы: гелиофиты, сциофиты, факультативные гелиофиты.

Гелиофиты (от греч. helios — солнце и phyton — растение), или светолюбивые растения, либо совсем не переносят, либо плохо переносят даже незначительное затенение. К данной группе относятся степные и луговые злаки, растения тундр, ранневесенние растения, большинство культурных растений открытого грунта, многие сорняки. Из видов этой группы можно отмстить подорожник обыкновенный, иван-чай, вейник тростниковидный и др.

Сциофиты (от греч. scia — тень), или теневые растения, не выносят сильного освещения и живут в постоянной тени под пологом леса. Это главным образом лесные травы. При резком осветлении лесного полога они приходят в угнетенное состояние и нередко погибают, но многие перестраивают фотосинтетический аппарат и приспосабливаются к жизни в новых условиях.

Факультативные гелиофиты , или теневыносливые растения, способны развиваться как при очень большом, так и при малом количестве света. В качестве примера можно назвать некоторые деревья — ель обыкновенную, клен остролистный, граб обыкновенный; кустарники — лешину, боярышник; травы — землянику, герань полевую; многие комнатные растения.

Важным абиотическим фактором является температура. Любой организм способен жить в пределах определенного диапазона температур. Область распространения живого в основном ограничена областью от чуть ниже 0 °С до 50 °С.

Основным источником тепла, как и света, является солнечное излучение. Организм может выживать только в условиях, к которым приспособлен его метаболизм (обмен веществ). Если температура живой клетки падает ниже точки замерзания, клетка обычно физически повреждается и гибнет в результате образования кристаллов льда. Если же температура слишком высокая, происходит денатурация белков. Именно это имеет место при варке куриного яйца.

Большинство организмов способно в той или иной степени контролировать температуру своего тела с помощью различных ответных реакций. У подавляющего числа живых существ температура тела может изменяться в зависимости от температуры окружающей среды. Такие организмы не способны регулировать свою температуру и называются холоднокровными (пойкилотермными). Их активность в основном зависит от тепла, поступающего извне. Температура тела пойкилотермных организмов связана со значениями температуры окружающей среды. Холоднокровность свойственна таким группам организмов, как растения, микроорганизмы, беспозвоночные, рыбы, рептилии и др.

Значительно меньшее количество живых существ способно к активному регулированию температуры тела. Это представители двух высших классов позвоночных — птицы и млекопитающие. Вырабатываемое ими тепло является продуктом биохимических реакций и служит существенным источником повышения температуры тела. Такая температура поддерживается на постоянном уровне независимо от температуры окружающей среды. Организмы, способные поддерживать постоянную оптимальную температуру тела независимо от температуры среды, называются теплокровными (гомойотермными). За счет этого свойства многие виды животных могут жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвин). Поддержание постоянной температуры тела обеспечивается хорошей тепловой изоляцией, создаваемой меховым покровом, плотным оперением, подкожными воздушными полостями, толстым слоем жировой ткани и т.д.

Частный случай гомойотермии — гетеротермия (от греч. heteros — разный). Разный уровень температуры тела у гетеротермных организмов зависит от их функциональной активности. В период активности они обладают постоянной температурой тела, а в период отдыха или зимней спячки температура значительно понижается. Гетеротермность характерна для сусликов, сурков, барсуков, летучих мышей, ежей, медведей, колибри и др.

Особую роль в жизнедеятельности живых организмов играют условия увлажнения.

Вода — основа живой материи. Для большинства живых организмов вода является одним из главных экологических факторов. Это важнейшее условие существования всего живого на Земле. Все жизненные процессы в клетках живых организмов протекают в водной среде.

Вода химически не изменяется под действием большинства технических соединений, которые она растворяет. Это очень важно для живых организмов, поскольку необходимые их тканям питательные вещества поступают в водных растворах в сравнительно малоизмененном виде. В природных условиях вода всегда содержит то или иное количество примесей, не только взаимодействуя с твердыми и жидкими веществами, но и растворяя газы.

Уникальные свойства воды предопределяют ее особую роль в формировании физической и химической среды нашей планеты, а также в возникновении и поддержании удивительного явления — жизни.

Эмбрион человека на 97 % состоит из воды, а у новорожденных ее количество составляет 77 % массы тела. К 50 годам количество воды в теле человека уменьшается и составляет уже 60 % его массы. Основная часть воды (70 %) сосредоточена внутри клеток, а 30 % — это межклеточная вода. Мышцы человека состоят на 75 % из воды, печень — на 70, мозг — на 79, почки — на 83 %.

Тело животного содержит, как правило, не менее 50 % воды (например, слона — 70 %, гусеницы, поедающей листья растений, — 85-90 %, медузы — более 98 %).

Больше всего воды (из расчета суточной потребности) из наземных животных нужно слону — около 90 л. Слоны — одни из лучших «гидрогеологов» среди зверей и птиц: водоемы они чувствуют на расстоянии до 5 км! Только бизоны еше дальше — на 7-8 км. В засушливое время слоны роют бивнями в руслах пересохших рек ямы, куда собирается вода. Буйволы, носороги и другие африканские животные охотно пользуются слоновьими колодцами.

Распространение жизни на Земле напрямую связано с осадками. Влажность в разных точках земного шара неодинаковая. Больше всего осадков выпадает в экваториальной зоне, особенно в верхнем течении реки Амазонки и на островах Малайского архипелага. Количество их в отдельных районах достигает 12 000 мм в год. Так, на одном из Гавайских островов от 335 до 350 дней в году идут дожди. Это самое влажное место на Земле. Среднегодовое количество осадков достигает здесь 11 455 мм. Для сравнения: в тундре и пустынях выпадает менее 250 мм осадков в год.

Животные по-разному относятся к влаге. Вода как физико-химическое тело оказывает непрерывное воздействие на жизнь гидробионтов (водных организмов). Она не только удовлетворяет физиологические потребности организмов, но и доставляет кислород и пищу, уносит метаболиты, переносит половые продукты и самих гидробионтов. Благодаря подвижности воды в гидросфере возможно существование прикрепленных животных, которых, как известно, нет на суше.

Эдафические факторы

Вся совокупность физических и химических свойств почвы, оказывающих экологическое воздействие на живые организмы, относится к эдафическим факторам (от греч. edaphos — основание, земля, почва). Основные эдафические факторы — механический состав почвы (размер ее частиц), относительная рыхлость, структура, водопроницаемость, аэрируемость, химический состав почвы и циркулирующих в ней веществ (газов, воды).

Характер гранулометрического состава почвы может иметь экологическое значение для животных, которые в определенный период жизни обитают в почве или ведут роющий образ жизни. Личинки насекомых, как правило, не могут жить в слишком каменистой почве; роющие перепончатокрылые, откладывающие яйца в подземных ходах, многие саранчовые, зарывающие яйцевые коконы в землю, нуждаются в том, чтобы она была достаточно рыхлой.

Важной характеристикой почвы является ее кислотность. Известно, что кислотность среды (рН) характеризует концентрацию ионов водорода в растворе и численно равна отрицательному десятичному логарифму этой концентрации: рН = -lg. Водные растворы могут иметь рН от 0 до 14. Нейтральные растворы имеют рН 7, кислая среда характеризуется значениями рН меньше 7, а щелочная — больше 7. Кислотность может служить индикатором скорости общего метаболизма сообщества. Если показатель рН почвенного раствора низкий, это означает, что в почве содержится мало биогенных элементов, поэтому ее продуктивность крайне мала.

По отношению к плодородию почвы различают следующие экологические группы растений:

  • олиготрофы (от греч. olygos — небольшой, незначительный и trophe — питание) — растения бедных, малоплодородных почв (сосна обыкновенная);
  • мезотрофы (от греч. mesos — средний) — растения с умеренной потребностью в питательных веществах (большинство лесных растений умеренных широт);
  • эвтрофы (от греч. ей — хорошо) — растения, требующие большого количества питательных веществ в почве (дуб, лещина, сныть).

Орографические факторы

На распространение организмов по земной поверхности определенное влияние оказывают такие факторы, как особенности элементов рельефа, высота над уровнем моря, экспозиция и крутизна склонов. Они объединяются в группу орографических факторов (от греч. орос — гора). Их воздействие может сильно сказываться на местном климате и развитии почвы.

Одним из главных орографических факторов является высота над уровнем моря. С высотой снижаются средние температуры, усиливается суточный перепад температур, увеличиваются количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы оказывают воздействие на растения и животных, обусловливая вертикальную зональность.

Характерный пример — вертикальная зональность в горах. Здесь с подъемом на каждые 100 м температура воздуха понижается в среднем на 0,55 °С. Одновременно изменяется влажность, сокращается длительность вегетационного периода. С увеличением высоты местообитания существенно меняется развитие растений и животных. У подножия гор могут находиться тропические моря, а на вершине дуют арктические ветры. С одной стороны гор может быть солнечно и тепло, с другой — влажно и холодно.

Еще один орографический фактор — экспозиция склона. На северных склонах растения образуют теневые формы, на южных — световые. Растительность представлена здесь главным образом засухоустойчивыми кустарниками. Склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. С этим связаны существенные различия в прогревании воздуха и почвы, скорости таяния снега, иссушения почвы.

Важным фактором является крутизна склона. Влияние этого показателя на условия жизни организмов сказывается главным образом через особенности почвенной среды, водного и температурного режимов. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому почвы здесь маломощные и более сухие. Если уклон превышает 35°, обычно создаются осыпи из рыхлого материала.

Гидрографические факторы

Гидрографические факторы включают такие характеристики водной среды, как плотность воды, скорость горизонтальных перемещений (течение), количество растворенного в воде кислорода, содержание взвешенных частиц, проточность, температурный и световой режимы водоемов и т.п.

Организмы, обитающие в водной среде, называются гидробионтами.

Разные организмы по-своему приспособились к плотности воды и определенным глубинам. Некоторые виды могут переносить давление от нескольких до сотен атмосфер. Многие рыбы, головоногие моллюски, ракообразные, морские звезды живут на больших глубинах при давлении около 400-500 атм.

Высокая плотность воды обеспечивает существование в водной среде многих бесскелетных форм. Это мелкие ракообразные, медузы, одноклеточные водоросли, киленогие и крылоногие моллюски и др.

Высокая удельная теплоемкость и высокая теплопроводность воды определяют более устойчивый по сравнению с сушей температурный режим водоемов. Амплитуда годовых колебаний температуры не превышает 10-15 °С. В континентальных водоемах она составляет 30-35 °С. В самих же водоемах температурные условия между верхними и нижними слоями воды значительно различаются. В глубоких слоях водной толщи (в морях и океанах) температурный режим отличается устойчивостью и постоянством (3-4 °С).

Важным гидрографическим фактором является световой режим водоемов. С глубиной количество света быстро убывает, поэтому в Мировом океане водоросли обитают только в освещенной зоне (чаще всего на глубинах от 20 до 40 м). Плотность морских организмов (их количество на единицу площади или объема) закономерно уменьшается с глубиной.

Химические факторы

Действие химических факторов проявляется в виде проникновения в окружающую среду химических веществ, отсутствовавших в ней раньше, что в значительной степени связано с современным антропогенным влиянием.

Такой химический фактор, как газовый состав, чрезвычайно важен для организмов, обитающих в водной среде. Например, в водах Черного моря очень много сероводорода, что делает этот бассейн не совсем благоприятным для жизни в нем некоторых животных. Впадающие в него реки несут с собой не только пестициды или тяжелые металлы, смывающиеся с полей, но также азот и фосфор. А это не только сельскохозяйственные удобрения, но и пища для морских микроорганизмов и водорослей, которые из-за переизбытка питательных веществ начинают бурно развиваться (цветение воды). Умирая, они опускаются на дно и в процессе гниения потребляют значительное количество кислорода. За последние 30-40 лет цветение Черного моря значительно усилилось. В нижнем слое воды кислород вытеснен ядовитым сероводородом, поэтому жизни здесь практически нет. Органический мир моря относительно бедный и однообразный. Жизненный слой его ограничен узкой поверхностью толщиной 150 м. Что касается наземных организмов, то они малочувствительны к газовому составу атмосферы, поскольку он постоянен.

В группу химических факторов входит и такой показатель, как соленость воды (содержание растворимых солей в природных водах). По количеству растворенных солей природные воды делятся на следующие категории: пресная вода — до 0,54 г/л, солоноватая — от 1 до 3, слабосоленая — от 3 до 10, соленая и очень соленая вода — от 10 до 50, рассол — более 50 г/л. Таким образом, в пресных водоемах суши (ручьях, реках, озерах) в 1 кг воды содержится до 1 г растворимых солей. Морская вода — сложный солевой раствор, средняя соленость которого составляет 35 г/кг воды, т.е. 3,5 %.

Живые организмы, обитающие в водной среде, приспособлены к строго определенной солености воды. Пресноводные формы не могут обитать в морях, морские не переносят опреснения. Если соленость воды изменяется, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей некоторые виды морских рачков опускаются на глубину до 10 м.

Личинки устриц обитают в солоноватых водах небольших заливов и эстуариев (полузамкнутые прибрежные водоемы, свободно сообщающиеся с океаном или морем). Личинки растут особенно быстро, когда соленость воды составляет 1,5-1,8 % (нечто среднее между пресной и соленой водой). При более высоком содержании солей их рост несколько подавляется. При снижении содержания солей рост подавляется уже заметно. При солености 0,25 % рост личинок прекращается, и все они гибнут.

Пирогенные факторы

К ним относятся факторы воздействия огня, или пожары. В настоящее время пожары рассматриваются как весьма значимый и один из естественных абиотических экологических факторов. При правильном использовании огонь может стать очень ценным экологическим инструментом.

На первый взгляд, пожары являются негативным фактором. Но наделе это не так. Без пожаров саванна, например, быстро исчезла бы и покрылась густым лесом. Однако этого не происходит, так как в огне гибнут нежные побеги деревьев. Поскольку деревья растут медленно, немногим из них удается выдержать пожары и вырасти достаточно высоко. Трава же растет быстро и так же быстро восстанавливается после пожаров.

Следует отмстить, что в отличие от других экологических факторов человек может регулировать пожары, в связи с чем они могут стать определенным ограничивающим фактором при распространении растений и животных. Контролируемые людьми пожары способствуют образованию богатой, полезной веществами золы. Смешиваясь с почвой, зола стимулирует рост растений, от количества которых зависит жизнь животных.

Кроме того, многие обитатели саванн, например африканский аист и птица-секретарь, используют пожары в своих целях. Они посещают границы естественных или контролируемых пожаров и поедают там насекомых и грызунов, которые спасаются от огня.

Возникновению пожаров могут способствовать как естественные факторы (удар молнии), так и случайные и неслучайные действия человека. Различают два типа пожаров. Наиболее трудно поддаются сдерживанию и регулированию верховые пожары. Чаще всего они весьма интенсивные и разрушают всю растительность и органику почвы. Такие пожары оказывают ограничивающее воздействие на многие организмы.

Низовые пожары , наоборот, обладают избирательным действием: для одних организмов они более губительны, для других — менее и, таким образом, способствуют развитию организмов с высокой устойчивостью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая отмершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений. В местообитаниях с малоплодородной почвой пожары способствуют обогащению ее зольными элементами и питательными веществами.

При достаточной влажности (прерии Северной Америки) пожары стимулируют рост трав за счет деревьев. Особенно важную регулирующую роль пожары играют в степях и саваннах. Здесь периодические пожары снижают вероятность вторжения пустынных кустарников.

Человек нередко является причиной увеличения частоты диких пожаров, хотя частное лицо не имеет права намеренно (даже случайно) вызывать пожар в природе. Вместе с тем использование огня специалистами — часть правильного землепользования.

Важнейшие абиотические факторы и адаптация к ним живых организмов

    Дайте характеристику света как абиотического фактора. Приведите классификацию экологических классов растений по отношению к свету.

    Охарактеризуйте температуру как абиотический фактор. Объясните экологический смысл правил Бергмана и Аллена (приведите примеры).

    В чем состоит различие между пойкилотермными и гомойотермными организмами?

    Как формулируется биоклиматический закон А. Хопкинса? Дайте ему экологическое объяснение.

    Охарактеризуйте влажность как абиотический фактор. Приведите примеры влаго- и сухолюбивых растений и животных, а также предпочитающих умеренную влажность.

Среди основных абиотических факторов рассмотрим свет , температуру и влажность .

Свет.
В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца" .

Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

Где А - донор электронов.

У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света.

Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

    Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.

    Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.

    Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

Важным экологическим фактором является температура.

Температура.
Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

У животных с постоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела (правило Аллена, 1877 г.).

Правило Аллена наглядно проявляется, например, при сравнении размеров ушей экологически близких видов: песца - обитателя тундры; лисицы обыкновенной - типичной для умеренных широт; фенека - обитателя пустынь Африки.
Реакция животных на тепловой режим проявляется и в изменениях пропорций отдельных органов и тела (у горностая из северных районов увеличено сердце, почки, печень и надпочечники по сравнению с такими же зверьками в местностях с более высокой температурой). Из правил Бергмана и Аллена бывают исключения.

Фенек

В зависимости от вида теплообмена различают два экологических типа животных: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos - разнообразный) - животные с неустойчивым уровнем обмена веществ, непостоянной температурой тела и почти полным отсутствием механизмов теплорегуляции (холоднокровные). К ним относятся беспозвоночные, рыбы, пресмыкающиеся, земноводные, т. е. большинство животных, за исключением птиц и млекопитающих.

Температура тела у них изменяется с изменением температуры окружающей среды.

Гомойотермные организмы (от греч. homoios - одинаковый) - животные с более высоким и устойчивым уровнем обмена веществ, в процессе которого осуществляется терморегуляция и обеспечивается относительно постоянная температура тела (теплокровные). К ним относятся птицы и млекопитающие. Температура тела поддерживается на относительно постоянном уровне.

В свою очередь, пойкилотермных животных можно разделить на эвритермных, ведущих активный образ жизни в сравнительно широком температурном диапазоне, и стенотермных, не переносящих значительных колебаний температур.

Механизмы терморегуляции бывают химические и физические.

Химический механизм обусловлен интенсивностью реакций в организме и осуществляется рефлекторным путем:

Физический механизм терморегуляции обеспечивают теплоизолирующие покровы (мех, перья, жировой слой), деятельность потовых желез, испарение влаги при дыхании, сосудистая регуляция кровообращения.

У пойкилотермных животных интенсивность обмена веществ прямо пропорциональна внешней температуре, у гомойотермных - наоборот, при ее понижении возрастают потери тепла и в ответ активизируются обменные процессы, повышается теплопродукция. Интенсивность метаболизма (обменных процессов) при гомойотермии обратно пропорциональна внешним температурам. Однако такая закономерность прослеживается лишь в определенных пределах. Повышение или понижение температуры относительно порогового значения вызывает перегрев или переохлаждение животного и в итоге его гибель.

Промежуточное положение между пойкилотермными и гомойотермными занимают гетеротермные животные. У них в активном состоянии поддерживается относительно высокая и постоянная температура тела, а в неактивном - температура тела мало отличается от внешней. У этих животных во время спячки или глубокого сна уровень обмена веществ падает, и температура тела лишь незначительно превышает температуру среды. Типичными представителями гетеротермных животных являются суслики, ежи, летучие мыши, медведи, стрижи, утконосы, ехидны, кенгуру.

Рассмотрим пример с насекомыми, представителями пойкилотермных животных (см. рисунок).

Кривая П. И. Бахметьева

При t° +10°C у насекомых наступает оцепенение, при t° 0°C - переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После резкого ее повышения начинаются процессы, ведущие к ухудшению физиологического состояния организма. Физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую приостановку всех жизненных процессов организма. Подобное состояние, получившее название анабиоз, наблюдается у вирусов, бактерий, беспозвоночных, земноводных, пресмыкающихся, лишайников, мхов. Явление анабиоза впервые было обнаружено и описано А. Левенгуком (1701 г.).

Изучение анабиоза послужило толчком к развитию различных криотехнологий (от греч. kryos - холод, мороз), например, криоконсервации. Этот метод широко используется в биологии, медицине, сельском хозяйстве, в практике длительного хранения консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, различных тканей и органов для трансплантации (от лат. transplantatio - пересаживание), культур, бактерий, вирусов.

Температурный фактор имеет важное значение в распределении живых организмов на Земле и тем самым обусловливает заселенность ими разных природных зон. В 1918 г. А. Хопкинс сформ улировал биоклиматический закон. Он установил, что существует закономерная, тесная связь развития фенологических (сезонных) явлений с широтой, долготой и высотой местности над уровнем моря.
Он подсчитал, что
по мере продвижения на север, восток и в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на 4 дня на каждый градус широты, 5 градусов долготы и примерно на 100 м высоты.

Одной из важных закономерностей в распределении современных организмов служит их биполярность - географическое распределение наземной и морской флоры и фауны, при котором один и тот же вид обитает в холодных и умеренных широтах обоих полушарий, но отсутствует в тропическом поясе (беззубые киты, ушастые тюлени и др.).

Не менее важным фактором окружающей среды является влажность.

Влажность.
Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. Все живое Земли включает воду, например, медузы содержат 95-99% воды, кукуруза 70%, зерновые злаки 87%. Даже в амбарном долгоносике, питающемся сухим зерном, содержится 46% воды. В эмбрионе человека 97% воды, после его рождения - 64-77%. У мужчин в возрасте от 18 до 50 лет в организме содержится ~ 61% воды, у женщин 54%.

За свою жизнь человек выпивает до 50-77 м3 воды (за сутки ~ 2,5-3 л). В целом за сутки человек теряет 2-2,5 л воды: 800-

1300 мл с мочой, около 200 мл - с испражнениями и 600 мл с поверхности тела и при дыхании. С потерей 1-1,5 л воды у человека появляется жажда, при расходовании 6-8% влаги от веса тела он впадает в полуобморочное состояние, при дефиците 10-12% наступает смерть.

В различные периоды развития потребность растений в воде неодинакова, особенно у разных видов; меняется она и в зависимости от климата и типа почвы. Например, злакам в период прорастания семян и их созревания нужно меньше влаги, чем во время их интенсивного роста. Для каждой фазы роста и стадии развития любого вида растений можно выделить критический период, когда недостаток воды особенно отрицательно сказывается на его жизнедеятельности. Влажность среды часто является фактором, лимитирующим численность и распространение организмов по земному шару. Например, бук может жить на сравнительно сухой почве, но ему необходима достаточно высокая влажность воздуха. У животных весьма важную роль играют проницаемость покровов и механизмы, регулирующие водный обмен.

Различают абсолютную влажность воздуха, представляющую собой количество газообразной воды (пара) в граммах в 1 м3 воздуха, и относительную. Относительная влажность характеризует степень насыщения воздуха парами воды при определенной температуре и выражается в процентах как отношение абсолютной влажности к максимальной влажности (массе водяных паров в граммах, способных создать полное насыщение в 1 м3 воздуха)

где: r - относительная влажность, %;
m - масса пара, фактически содержащегося в 1 м3 воздуха (абсолютная влажность), г;
mнас - масса 1 м3 насыщенного пара при данной температуре, г.

Важное значение для организмов имеет дефицит насыщения воздуха водяными парами, т. е. разность между максимальной и абсолютной влажностью при данной температуре:

d = mнас - m.

При разных температурах дефицит насыщения воздуха водяными парами неодинаков при одной и той же влажности. Чем выше температура, тем воздух суше, и тем интенсивнее в нем происходит транспирация (испарение воды листьями и другими частями растений).

Сезонное распределение влаги в течение года, а также ее суточное колебание тоже исключительно важно для жизнедеятельности организмов.

По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность . Среди растений различают:

Среди наземных животных различают:

    Гидрофилы - влаголюбивые животные (мокрицы, ногохвостки, комары, наземные планарии, наземные моллюски и амфибии).

    Мезофилы - обитают в районах с умеренной влажностью (озимая совка, многие насекомые, птицы, млекопитающие).

    Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные грызуны и пресмыкающиеся).

Например, слоновая черепаха запасает воду в мочевом пузыре, некоторые млекопитающие избегают дефицита влаги путем отложения жиров, при окислении которых образуется метаболическая вода. За счет метаболической воды живут многие насекомые, верблюды, курдючные овцы, жирнохвостые тушканчики и др.